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THE TWO-DIMENSIONAL LOADING PROBLEM OF AN 
ELAST,O-PLASTIC PLANE WEAKENED BY A HOLE* 

G.I. BYKOVTSEV and YU.D. TSVETKOV 

A general approach to the solution of problems on finding the elasto- 
plastic boundaries of a plane under tension weakened by a hole, is 
considered. The propagation of the plastic domain in the plane is 
studied during the loading process, when part of the hole outline is in 
the elastic zone. A method is developed for carrying the matching 
conditions of the solutions from the elasto-plastic domain over to the 
hole contour, which would enable the determination of the elasto- 
plastic boundary to be reduced to the solution of a sequence of boundary 
value problems of elasticity theory. The possibility of applying the 
method developed to the problem of the uniaxial tension of an elasto-- 
plastic plane weakened by a circular hole is analysed. 

Many elasto-plastic problems in which the whole body contour is 
enclosed by the plastic domain /l, 2/ are solved by the method of 
perturbations. If the plastic flow starts from a certain point of the 
body contour, this method requires some modification /3/. The exact 
solution of the problem of the biaxial tension of an elasto-plastic 
plane weakened by a circular hole is obtained in /4/. 

1. Th e plane state of strain of a loaded eiasto-plastic plane weakened by a cylindrical 
hole with generators parallel to the x3 axis is considered. Let L be the contour of the hole 
in the x1x% plane. 

The equilibrium equations that have the following form in the absence of mass forces: 

cJcc~.$ = 0 (1.1) 

hold in the elastic and plastic domains of the plane. 
It is assumed that the hole boundary is stress-free, while forces Prand P, (P2>pp,) are 

applied, respectively, to the plane at infinity parallel to the ~1 and x2 axes of a Cartesian 
rectangular coordinate system 

Uug&zQ IL = UC@& IL=== 0, Bll- = PI, upg-= =I P* 11.2) 

where n,,t,(u=t,2) are unit vector components of the normal and tangent to the hole outline. 
The solution of the problem under consideration can be found in the elastic domain by 

means of the Kolosov-Muskhelishvili formulas /5/ 

~11 + b,% = 4 Ro @ (z), usaz - ull + Zio,, = 2 &@’ (z) + Y (z)] (2.3) 

where m(z) and Y(z) are certaom analytic functions of the argument Z==.Q + &. 
The stresses originating in the plastic domains of the plane satisfy the Tresca plas- 

ticity condition 

sagsag = k2; sag = uaB - d&, Q = omJ2 (1.4) 

If 'p is the angle between the first principal stress and the qaxis, then taking account 
of (1.4) the relation between the stress components and the principal stresses in the plastic 
domain is /l/ 

011 

(Jo2 I 
=a&kcos2rp, q,=ksin2q, k=&(nl - a*) 

Satisfaction of the condition of continuity for the stress components 

t@XzellLd=O 

(1.5) 

0.8) 

is assumed on the boundary &of the elastic and plastic domains. 
The relationships (l.l)-(1.6) completely define the state of stress of a plane with a 

hole for biaxial tension. 

2. For certain values of the tensile forces P, = P,, = con& P, < PzO, let a plane 
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weakened by a hole be in the elastic state, and for Pz=Pso let at least one point A of the 
contour L exist at which condition (1.4) will be satisfied. The rectangular Cartesian co- 
ordinate system in Fig.1 is displayed so that the x1 axis passes through this point perpen- 
dicular to the tangent drawn to L at the point A. For P,>Pzo a plastic zone is formed 
around this point. 

In parametric form the equation of the boundary L,can be written as 

XQ, (0) =X&o) (6) + r(6) ?z, (2.0 

where 6 is the slope of the unit normal drawn to the contour L to the x1 axis, X=(O) (8) (a = 

1, 2) are the coordinates of points of the contour L, and r(e) is the magnitude of the segment 
along the normal to the boundary L with origin at L. 

Taking account of (2.1) the conjugate condition for solutions (1.6) can be written in 
the form 

(11 

.z rm a me OD 
%R _ p aw 

--- 
m! anrn z x* on 

an” 
L 

m=o k=0 

(2.2) 

where a& and a:~ are stress components in the elastic and plastic domains, respectively. 

Fig.1 

Therefore, the boundary conditions (1.21 and (2.2) in 
combination with (1.5) enable us to solve the equilibrium 
equations and to determine the stress components P o&, 0~ as 
well as the unknown function .r(@). 

Let P,=P,,=O and the magnitude of the tensile force 
P,=P vary as a certain small parameter E increases 

P=Po-i_ f&Pi, Po=Pzo 
i=l 

,(2.3) 

Since the position of the boundary L, depends on the 
quantity P, it is then natural to seek it in the form 

Xa=X$)+n, (2.4) 

The stress components in the elastic domain are represented for P> Pa in the form 

(2.5) 

where @A are the stress components corresponding to the tensile force PO. 
Let xx@) (6,) 

f6r P> P, 
denote the coordinates of the points of intersection of the boundary L, 

and the hole outline L. If the external loading process is sufficiently smooth 
and the transition of the elastic work of the material of the plane to the plastic work is 
smooth, then it can be assumed that the angle 8* of enclosure of the contour L by the plastic 
zone will be a quantity of the order of e. 

The equilibrium Eqs.cl.1) are written in orthogonal curvilinear coordinates X and y in 
the form 

Here the arclength AB of the contour L (Fig.11 is taken as the coordinate X while the 
length of the normal SC is taken as the y coordinate. 

The stress components (1.5) in the plastic zone are represented in the new coordinate 
system in the form 

au 
cr, 

==s_t_kcos2(cp--08), TXy=ksin2(q,-0) (2.7) 

It will later be necessary to replace the angle cp by the angle cp -6, while preserving 
its previous notation, when going from the x,X* coordinate system to the xu system. 

Inserting the relationships (2.7) into (2.6), we obtain after reduction 

%-2k[{-$--&)sin2rp-H-$-cos2cp]rr=O 

H++Zk[tg-+f cos2rp + H%sin2cp] =O 

(2.8) 
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In the notation used the equation of the elasto-plastic boundary (2.4) is written as: 

The equilibrium equations are valid everywhere in the elastic domain, including the 

boundary L,,and therefore, by using the relationships (2.5) and (2.9), Cqs.(2.6) can be 

represented in the form 

{Jg?L[!g!!+(*+A$rg+ 
t=o m=o 

.+?$!I Em+krm] I[<=0 

(2.10) 

1 i 
a*#) 

-+ R aY 
- F)] Em+k~~] IL=0 

Eqs.(2.8) hold everywhere in the plastic domain including the boundary L.. 
The followinq equality can be considered the result of the assumption about the order of 

smallness of the magnitude of the angle 8,of enclosure by the plastic domain: 

z*(O) = 0 (E) 

Taking account of (2.7) and (2.9), we can write (2.8) to 0 (E) accuracy in 

{g+Zk$]j,.-0, (++2k(s -f)}lL=o 

(2.11) 

the form 

(2.12) 

Along the contour L free from an external loadthemagnitude of (I is constant, from which 

by taking account of the plasticity condition we conclude 

c IL =k (2.13) 

There results from the condition that the angle cp is constant along the load-free hole 

contour 
aTlax iI, = 0 (2.14) 

According to (2.13) and (2.14), Eqs.(2.12) take the following form to 0 (s) accuracy: 

3cpiay IL. = 0, aday 1~ = 2kiR (2.15) 

Taking account of (2.9) and (2.15), the stress components along the boundary L, can be 

written as follows to O(s') accuracy from the plastic domain side 

cry = eBkr,lR, ox = 2k + cBkr,lR, ~~~ = 0 (2.16) 

Taking (2.5), (2.9) and (2.16) into account, the matching condition of the solutions (1.6) 

in the xy coordinate system are rewritten to O(G) accuracy in the form of the equalities 

(2.17) 

We examine the term F(r) = 0, co) /r. - 2k on the left-hand side of the second equality in 

(2.17). By the assumption made above, a plastic state is realized at the point A of the 

contour L for P = PO. At the same point o,(O) takes its maximum value on L, i.e., 

F (0) 7 (up -2k)I,,,=O, -$I,_, = ~(Xio=O (2.18) 

Taking these equalities into account, the Taylor series for the function F(x) can be 

written in the neighbourhood of the point A in the following form: 

(2.19) 

since 5 in relationship (2.19) lies on the arc IO; .I$' I. 

To determine the order of smallness of the other quantities in the boundary conditions 
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(2.17) it is necessary to consider (2.10) for the zeroth approximation (& = 0) 

(2.20) 

From the first relationship in (2.18) and the assumption (2.11) it follows that: 

&S$'/&Z 1~. = 0 (E), from which according to the first equation in (2.20) ar$/ay IL = o(E). Since 

the side surface of the cylindrical hole is stress-free, the equality &"'/dr IL. = 0 is valid, 

and taking it into account we obtain from the second equaion in (2.20) 80~iay 1~. - 2kiR = O(E). 
Therefore, to an accuracy of O(E) the boundary conditions (2.17) can be written in the 

form 

(2.21) 

The first and third conditions in (2.21) in combination with the condition at infinity 

determine the state of stress of the material of the plane in the elastic domain 

&'=hef', c$)=h@, r!$ --_ hr!$, h= const 

Substitution of these solutions into the second boundary condition (2.21) yields 

(2.22) 

Comparing relationships (2.11) and (2.22) we obtain 

rl=P,=h=O (2.23) 

Therefore, under the assumption (2.11) made relative to the order of smallness of x*(O) 

the expansion of the desired solutions in series in the small parameter starts with the 

second power of s. 
Without loss of generality we can set 

P = P,, (1 + 9) (2.24) 

thereby defining the small loading parameter which had been undefined in all the previous 

expansions. 

Using relationships (2.23) and reasoning as before, the stress tensor components along 

L, from the plastic domain side can be written with O(9) accuracy in the form 

oy = 92kr,lR, (J, = 2k + ~“Bkr,lR, z,,, = 0 

Taking these equalities into account, the matching condition of the solutions (1.6) are 

written to O(e3) accuracy in the form 

u:“’ IL = 0, {fed)- 2k) + CT:‘) IL = ._ rz (_f!$Y._ $_) IL , (2.25) 

The first and third boundary conditions in (2.25) in combination with (2.24) determine 

the state of stress of the material of the plane in the elastic zone 

c:"' =c(O) (2) y ( 0, --+$, p _ p XY - w 

The second condition in (2.25) enables us to find the function 

Therefore, t'aking account of the assumptions made, the problem of the uniaxial tension 

of an elasto-plastic plane weakened by a cylindrical hole can be reducedtoasetof elasticity 
theory boundary value problems. The boundary conditions for the sequence of elastic 

are determined by using the matching condition for the solutions on L,. They can be 
as follows in general form 

oy)Ir=f:i+l) (ri,e, 5) 

SJ~) 1, = fp) (ri+l,e, cr) 

z$?IL=ff+l)(rire, z), i= 2,3, . . . 

problems 

written 

(2.26) 
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The first and third boundary conditions in (2.26) determine the state of stress of the 

material of the plane in the solution of the corresponding elastic problem; the desired 

function Ti+l is found by using the second boundary condition. 

A constant, which is a result of the static determinancy of this problem, is imposed on 

the solution constructed for the problem under consideration: each plastic element of the 

plane should be connected to the hole contour by slip lines that lie entirely in the plastic 

zone. 

We also note that the series expansions in the small loading parameter introduced above 

are not Taylor series expansions since the dependence of r,(o) on E is not taken intoaccount, 

i.e., the expansions constructed are formal. The following reasoning justifies such an 

expansion: the solutions being obtained in the elastic and plastic domains satisfy the 

theories of elasticity and plasticity as well as the boundary conditions; only the conditions 

on the elasto-plastic boundary are satisfied approximately, consequently, the differences 

in the stresses on the boundary L, were determined numerically for the solution constructed 

in the example examined below. 

3. A problem of biaxial tension of a plane weakened by a circular hole of unit radius 

is considered. The solution of the elastic problem with boundary conditions (1.2) is sought 

for P, = PI,, P, = P,, (P,,IP,,> 1) by using (1.3) and will be /5/ 

a%+4 (I-4) - +B(l +3&4+28 

(~&+4 (I++) + -&B(l + 3+x28 

(0) ' %=-2_B 1+2T-3f sin20; 
( I ) 

A = P,, + Pro, 

B.=P,, - P,, 

(3.1) 

Let the conditions at infinity be given in the form 

urr- = PI0 (1 + a&z), c&- = P,, (1 + EZ), UE IO, 11 (3.2) 

The stresses (3.1) satisfy the plasticity condition (1.4) at two points of the contour 

L with the coordinates (1, 0), (1, ?x) for P, = P,,, P, = P,, (SP,, - PI, = 2k). For P,>p,, (3.2) 

plastic domains are formed around these points, wherein the stress components are determined 

by the equalities /l/ 

urP = 2k In r, c$’ = 2k + qp, art? = 0 (3.3) 

Taking account of (2.23) in polar coordinates, we write Eq.(2.4) of the boundary L, in 

the form 

rr = 1 + ~9, + &g + 0 (e”) (3.4) 

The angle 8, of hole contour enclosure by the plastic domain is determined from the 

condition 
P,(E, &)=I, sine,=o(e) (3.5) 

According to (3.3) and (3.4) the stress components U& along the elasto-pl,astic boundary 

will be the following 

erP IL, = 2k [ear, + ears + 0 (e*)l, uep IL, = 2k 11 + E2rl f e*r8 -I 0 (e% rTeP IL* = 0 (3.6) 

Taking (2.51, (3.4) and (3.6) into account, the matching conditions for solutions (1.6) 

can be written in the form 

{u~'+eP(u~)+~r~)+e3(u~)+~ra)+O(e')]/r+= 

2k [e”r, + 9rg + 0 (Ed)] 

(3.7) 

(u~'+Ez(u~)+~r,)+e3(u~~+~r~j+~(~4)j~L~= 

2k [ 1 + ePrZ + esr3 + 0 (e4)] 

where L, is the part of the hole contour in the plastic zone. 

The boundary conditions to find the second approximation of the solution of !l.l) in 

the elastic domain are determined by (3.1), (3.21, (3.5) and (3.7) and will be 
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o!“’ lrzl = 0, T$l lr3i = 0, ql- = UP,,, u$&?- = P,, (3.8) 

&)j7=r - 4(P,, - Plo)ba sirPtl= 2r,(5P, - 3PrJ 

The solution of the problem formulated with the first four boundary conditions in (3.8) 

has the form (3.1) for A =P,, +~PN, B = P,, - aPrO. The unknown function r, is determined 

from the fifth condition in (3.8) 

r,+-_21z!E, 
s2 E2 SO = 3P,, - CZP,,, s1 = P,, - P,,, (3.9) 

2 
s2 = 5P,, - 3P,, 

The first approximation El,(l) for the angle of enclosure of the contour L by a plastic 

zone is found from (3.5) taking (3.9) into account 

sin et'= i--a I/S&~ (3.10) 

The boundary conditions to determine the third approximation of the solution of the 

problem under consideration are written according to (3.2) and (3.7) in the form 

@ IL, = 0, -c',3e) IL, = - 8xs,e-Lsin0, u ---(J 11 - 'L2 -= 0, (3.11) 

a$'(r, - 2s,r,, x=sign(cosO) 

Gn the segment L--n, nl the r#)IpSl is an odd function. Its Fourier series expansion 

will have the form 

m 

&J[_r= 2 tzm c~s 2me (3.12) 
m=1 

bzn,=$ C 1 c 

sin(Zm - l)$u sin@ + I)@$ 

zm-1 - 2m+1 1 + 
D [ sin(2m - 3) 0:) sin (Zm + 3)8(:) 

2m-3 - 2m+3 II 
C=4%(3+$), Dz=--4$ 

The solution of (1.1) with the boundary conditions (3.11) and (3.12) is sought by using 

(1.3) in which the functions,@((z)and Y(z) are determined by the relations /5/ 

and, therefore, the stress components have the form 

@)=-_ 2 (m+,1)b,*~(1-~)cos2me 
m=1 

up = 2 (m + i)b,, -&(f$ - $)cos2me 
m=1 

(3.13) 

T$L - e (m + l)b”“-+( L-f) 
m+l 

sin 2me 
rn=zl 

Taking account of (3.5), (3.12) and (3.13), we determine the unknown function rs from 
the fifth boundary condition in (3.11) 

4 sinSO~) 
----TT- 

4 sin ep sin'8 
es 1 + 0 (4 

The second approximation O,W for the angle of enclosure of the contour L by a plastic 

domain is determined from the relationship 



250 

In the case of uniaxial tension (PI0 = 0) of an elasto-plastic plane with a circular 
hole, we have 

) 

The position of the elasto-plastic boundaries .& is shown in Fig.2 for the case of 
uniaxial tension of a plane with a circular hole, while graphs are given in Fig.3 for the 
dependence [o,]/Bk (the solid lines), IcJ&% (the dashes), [T,&% (the dash-dot lines) on 
T = sin e/sin 0, along the boundary L, for values of the small loading parameter E = 0.3; 
0.4; 0.6 (curves 1-3, respectively). 

1. 

2. 
3. 

4. 
5. 

Fig.2 Fig.3 
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